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III. ResuLts FOR 7 MM OPEN STANDARD

The above method was used on an open calibration standard
that accompanies HP8510 network analyzers. The 7 mm open,
part number MMC2616D1, was evaluated from 0.1 to 20 GHz.
A piece of 10 cm air line, HP11566A with support beads, was
used to offset the calibration standards.

Measurements were first made on the three standards at a
reference plane. A fixed load was used between 0.1 and 2 GHz,
with a sliding load used at the higher frequencies. A machine
averaging factor of 1024 was used to improve measurcment
accuracy. These measurements were repeated a second time, in
which the three standards were offset by the piece of air line.

The measured phase shift of the imperfect open is shown in
Fig. 3. The raw data are presented along with a least square fit
of the data. Increased averages and repeated acquisitions can
improved the raw data. The true phase shift is a smooth func-
tion. The least square fit of the data yields the exact correction
factor needed for the open. A detailed printout of the phase
shift of the 7 mm open is available on request.

IV. APPLICATION OF METHOD

This approach was found most useful in a measurement study
of coaxial discontinuities. An investigation was done to deter-
mine the axial separation distance of the inner and outer step
discontinuities which produced minimum reflections. To facili-
tate fabrication of test pieces, a 7 mm to 14 mm type transition
was studied. This required a calibration procedure using a
14 mm prototype open.

Measurements of the open’s phase shift for the 14 mm open
are presented in Fig. 4. Again the least square fit of the raw
data was used to determine the phase shift factor. The phase
shift factor was used to determine the error terms, Er and Es,
needed in the measurement. A detailed printout of the phase
shift for the 14 mm open is available on request.

V. CONCLUSIONS

This empirical method can be used to accurately determine '

the correction factor needed for imperfect opens due to fringing
capacitance. It offers the advantage of determining the unknown
phase shift for an open by using the same unknown open, an air
line with unknown properties, and a network analyzer which is
not calibrated. No other calibration kits or modeling coefficients
are necessary. This method can be used with opens of any type
if an accompanying short, match, and air line exist.
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An Analytical Approach to the Analysis of
Dispersion Characteristics of
Microstrip Lines

Dorel Homentcovschi

Abstract —A new analytical method for determining the dispersion
characteristics of microstrip lines is given. The method uses dual
integral equations, and the dispersion relation is obtained in terms of a
double infinite system of linear equations with good convergence proper-
ties.

I. INTRODUCTION

Microstrip is one of the most important elements in mi-
crowave integrated circuits and microwave networks. In the
early stage of microstrip-line analysis, much of the work was
based on the quasi-TEM approximation [1]-{4]. This approxima-
tion is valid only for low frequences, and the resulting parame-
ters, such as characteristic impedance and the propagation
wavenumber, are independent of frequency. However, this ap-
proximate model is inadequate for estimating the dispersion
properties of the microstrip line at higher frequences; conse-
quently, a more rigorous full-wave analysis is required [5]). Vari-
ous methods have been employed to calculate the dispersion
characteristics of the stripline. Thus Hornsby and Gopinath [6]
applied the finite difference method and a minimization tech-
nique. Dally [7] applied the finite element method; Zysman and
Varon [8] formulated the integral equations of the problem; and
Yamashita and Atuski [9] solved these integral equations numer-
ically by nonuniform discretization of the integral domains. For
shielded microstrip lines Mittra and Itoh [10] used the singular
integral equation approach for deriving a new form of the
dispersion equation with superior convergence properties. The
spectral-domain approach has also often been applied to the
full-wave analysis of the microstrip lines [11]-[14]. We also
mention application to the microstrip problem of the variational
conformal mapping technique [15].

Some of the developed methods are based on the assumption
of certain “closed form” expressions for the longitudinal and
transverse current distributions on the strip. As the proposed
forms do not reveal the frequency and dielectric constant depen-
dence of the current distributions with good accuracy, the re-
sults obtained with various methods have sometimes been quite
different [16],

In this paper we developed a method to analyze the problem
of microstrip shielded by two parallel planes similar to the
method given by Mittra and Itoh [19] for the case of the
completely shielded microstrip. Since in our case the dielectric
domain is infinite, there follows a system of two integral equa-
tions instead of series equations corresponding to the bounded
dielectric domain considered in [10]. We have succeeded in
transforming the system of integral equations into an infinite
system of linear equations, As a by-product, there follow two
compatibility conditions which yield the dispersion equation of
the problem.

II. FORMULATION OF THE PROBLEM

In Fig. 1 the cross section of the microstrip line to be analyzed
is shown. The geometry contains a conducting strip placed on a
dielectric substrate and two perfectly conducting planes. The

Manuscript received January 25, 1990; revised October 3, 1990.

The author is with the Faculty of Automatics, Polytechnic Institute of
Bucharest, 313 Splaiul Independentei, Bucharest, Romania.

IEEE Log Number 9042493,

0018-9480 /91 /0400-0740$01.00 ©1991 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 4, APRIL 1991 741

Ay
g, D,
-1 1

Fig. 1. Geometry of the problem.

strip conductor is assumed to be negligibly thin and lossless. We
consider all the length referred to the strip length and the axis is
chosen so that the strip lies on the segment [~ 1,1] of the x axis.
Let the space over the strip be occupied by a homogeneous
dielectric of relative permittivity €; and height #,. The lower
domain, D,, of height 4, is occupied by a dielectric of relative
permittivity e,.

A hybrid-mode analysis is necessary in this inhomogeneous
structure. We denote by ¢ and ¢ the scalar potentials for
TM waves and TE waves, respectively. The electromagnetic
(EM) fields of hybrid modes are given by the relations which can
be found in [9], [10], and [17]. The two scalar potentials satisfy
two-dimensional Helmholtz equations in domains D, and D, as
well as the condition that the tangential components of the
electric field vanish on the strip and on the two shielding planes.
In view of these conditions we write

= A(k) sinha,(k, +(=1)"y)

(¢) =
v fo €—p° sinh ok, coskedk (1)
) — (-1 )Bj‘ A(k ) )
/ wp Yo €, - B*
: COSha’(k"Jr(—l)]y) sin kv dk. )

sinh o hy

Here a; = ‘/k2 +B%—¢k%, B=B/k, is the normalized prop-
agation constant, and A(k) and B(k) are functions to be
determined.
The EM field derived from potentials ¢ and ¢{" satisfies
the interface conditions at y =0:
Exl =‘Ex2 E =E12’ xe(—oo,oo), (3)
Besides these conditions, the EM field must satisfy at the circuit
plane the following relations:
Exl =0 Ezl =0
Hxl = Hx2 H P H

z1

xe(-1,+1)

xE€(—»,~1)U(+1,+x). (4)
III. THE INTEGRAL EQuUATIONS OF THE PROBLEM

By imposing the conditions (4), we get the following equa-

tions:

f:A(k)cos(kx)dk=0, re(=1,+1) (5

f:{al(k)A(k)+b1(k)B(k)} sin (kx ) dk = I?sgn(x),

ZBk2
x€(—o,~DU(+1,+x) (6)

[ BUcos (ke dk =V /Ky, xe(=1,+1) ()

jo {ay(k)A(k)+ by(k)B(k)} sin (kx) dk =0,

x€(—o, =1)U(+1,+). (8)

In (6), sgn(x) is the sign function and we have also denoted

a(k)~[(-1——-al) th (e h +(i—ﬁ) i (agh| [k
1 = 82 coth (a;h,) o, B2 coth (a, 2)]/

@
©)
k k
a,(k)=b,(k)=— coth(ahy)+ — coth(a,h,) (10)
a; as
k
bz(k)=(k§f1‘ﬁ2)a—l‘30th(“1h1)
ki X \h
+(kie, — B )a—zcot (azh3). (11)

The equations given by x components in (4) were integrated
with respect to the x varnable and I? and V, are two integra-
tion constants. In fact, I is the current flowing in the strip in
the direction of the z axis.

We perform now the following change of variables:

C(k) = a,(k)A(k)+b,(k)B(k)
D(k)=ay(k)A(k)+ by (k)B(k)

The resulting equation can be written in the form

(12)
(13)

/:C(k)cos(kx)dk =2V0/kg+f0°°{cl(k)C(k)

+d(k)D(k)} cos(kx) dk,
xe(-1,+1) (14)

Eplz"sgn(x),

x€(—w,-1U(+1,+x) (15)
waD(k)-cos(kx)dk —(e1+e; —252)V0+f0°°{c2(k)C(k)

+d,(k)D(k)} -cos (kx) dk,
xe(-1,+1) (16)

f C(k)sin(kx)dk =

meD(k)sin(kx)dk=0, X € (=0, —1)U(+1, +).

(7

Iﬁ the above relations, we have put
c\(k) =1+{2B%;,(k)+2b,(k)}/A /B> (18)
dl(k)=_{2[32‘11(15)+2b1(k)}/A/32 (19)

ca(k) = —{[287 = ki(e, + &2)] ax(k) +2by(K)} /8 (20)
dy(k) =1~ {[ki(e, + &) —28%|a(k) ~2b,(K)} /A (21)
A =ay(k)by(k)— ax(k)by(k). (22)

It can be verified directly that we have:

(k)=0(k?)  d(k)=0(k™%) fork—w(j=1,2).

23)

The relations (14)-(17) constitute the system of integral equa-
tions for solving the problem. Assuming, for the moment, that
the right-hand-side terms are known, we solve the systems of
coupled integral equations (14), (15) and (16), (17). A system of
dual integral equations of the same type was considered in [18]
in solving the microstrip problem in the static case. Taking
account of those considered in the above-mentioned paper, we
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can write directly the solutions

COk) = 5= (k) ke +265(k) ~4 5 i () /KED (24)

n=1
D(k)=~4 L nly,(k)/ K. (25)
n=1
Here we have put
wu . WU .
()= G lCk) DK =250 BCk). (26)
The constants
2= [ {e,(k)C(K) + &, (k) D(K)) ) e,
i=1,2n=0,1,2,--+ (27)

are the solutions of the following double infinite systems of
linear equations:

=(1 =) L =) 4 £d

EO = T {eE0+ d95) + 5O

n=1

= Y (@0 a5 @)
n=1
We have denoted
&P = —an [ ¢;(k) 1, (k) Iy, (k) / kdk (29)
0
a9 =—dn [ d,(K) ], () Iou(k) /kdk  (j=1,2)  (30)
0
1
b= —{ [ 19800 (k) =1] ka
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1 e
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™70

TR Qe
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KR

(33)

¢=10.577216 - - - being Euler’s constant.
Beside these, in order to obtain the above solutions the
following compatibility relations must be fulfilled:

w1

7[;1112—)‘6'(()1)]12(’—2V})=0 (34)

wu _

Wﬂ}’]ﬁ +(e +e,-2B%)V,=0. (35)
0

In fact we have two relations relating the constants I? and V.
The compatibility condition is

€1+ €,y
k3 -
( 0 2
and it is exactly the desired dispersion equation of the problem.
The double infinite set of equations (28) and (29) for index
values r=1,2, - -+ determines the constants £{/, £, --- and
the first relation in each set gives the values of the constants £{

(j=1,2). Moreover, the dispersion relation (36) gives the values
of the propagation constant.

1
ﬂl)(; In2— ;zs,”) + i@ =0 (36)

TABLE 1
Frequency 2X2 Matrix 4X4 Matrix 100X 100 Matrix
(GHz) [10] [10] [6] Eq. (36)
10 0.530 0.531 0.55 0.566
20 1.10 1.115 1.17 1.1699
30 1.71 1.74 1.77 1.787
75
¢ 8 ey r21)
eff 52 =90 éy%

83

7e -~ 2 —

73

30 0

io F(Ghz) 50

Fig. 2. Effective dielectric constant versus frequency.

37

Eerr
H=H,/12L)=0&

27

Effective dielectric constant versus substrate dielectric
constant.

Fig. 3.

IV. ArpLicaTIONS

We applied the formulas given above to determine the disper-
sive characteristic of certain microstrip structures.

The first example is the structure having the following param-
eters: €, =1,e, =9.0,h; = 3,h, = 1. By the above normalization
these are just the parameters considered in [6] and [10]. (In fact
the completely shielded structure used in the above mentioned
papers also has two lateral sides for x = +3.5.)

In system (28) we considered only the equations correspond-
ing to » =1 and have put {7 =0 for n > 2. The results obtained
are given in Table L. They agree very well with the parameters
obtained in the studies mentioned above, although our structure
is slightly different from the completely shielded structure they
used.

We have also studied, for the open microstrip line, the depen-
dence of the effective dielectric constants upon the dielectric
thickness and also on the relative dielectric constant for various
values of frequency. The results are plotted in Fig. 2 and Fig. 3.
Note the linear variance of the effective dielectric constant with
respect to dielectric permittivity for every frequency.

We empbhasize the good convergence properties of the infinite
set of linear equations. As in the static analysis [18)], it is
sufficient to consider in the infinite system only a single equa-
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tion in order to obtain accurate numerical results. We can also
obtain, by means of (36), the higher order modes. In this case
the integrals which express the equation coefficients must be
regarded as principal values since function A(k) vanishes inside
the integration domain.

V. CONCLUSIONS

A new method is given for calculating the dispersion charac-
teristics of microstrip lines. The analysis is rigorous and it
expresses the solution of the dispersion equation in terms of the
solution of a double infinite system of linear equations. The
system coefficients are given by certain quadratures. The numer-
ical examples reveal the high convergence order of the method.
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Admittance Calculation of a Slot in the Shield of
a Multiconductor Transmission Line

Richard G. Plumb

Abstract —The admittance calculation for a narrow slot in the con-
ducting shield of a multiconductor transmission line is presented. The
admittance represents a generalized admittance resulting from an
asymptotic, one-term moment method solution and is approximated
using transmission line theory. The calculated admittance is useful in
modeling connectors for multiconductor transmission lines. Some useful
impedance calculations for multiconductor transmission lines are devel-
oped.

I. INTRODUCTION

In a recent paper [1], we presented a method of modeling
connectors for multiconductor transmission lines (MTL’s). In
that investigation the connector was modeled as a narrow cir-
cumferential slot, of width d, in the shield of an MTL. The
MTL, uniform in the axial direction and having an arbitrary
cross section, contained N lines and a conducting shield of
finite width ¢. The interior medium of the MTL was assumed
lossless and homogeneous. The problem was solved by treating
the slot as a thick aperture in the shield. The equivalence
principle was invoked to obtain two coupled integral equations
in the equivalent surface magnetic currents. A one-term mo-
ment method solution was then obtained for an electrically
narrow slot and a small shield radius. The moment method
solution led to an equivalent circuit representation. Power calcu-
lations were derived from the equivalent circuit for the power
radiated through the slot and the power transmitted down the
line. When the slot admittance is replaced by the transfer
admittance of a connector, the power radiated through the slot
becomes the power radiated through the connector.

The original MTL network and an equivalent circuit are
shown in Fig. 1. The equivalent circuit consists of the admit-
tances Y%, Y?, and Y, corresponding to the generalized admit-
tance of the internal region of the MTL, the slot region, and the
region external to the MTL respectively, For a one-term mo-
ment method solution, Y°¢ is the radiation admittance or the
external input admittance of the antenna formed by the outer
shield surface, having a finite feed width of length d, when a
uniform electric field excites the antenna. The admittance Y°
corresponds to the transfer admittance of the slot, which can be
interpreted as the transfer admittance of a connector. The
current source I’ is a generalized current source and is obtained
by calculating the net short circuit shield current on the inner
shield surface. The current I’ is the current on the inner shield
surface when the slot is covered with a perfect conductor.

In this paper we detail the calculations for the admittance Y.
An approximate expression for the admittance is obtained using
transmission line theory. In doing so, some useful impedance
calculations for multiconductor transmission lines are presented.

II. STATEMENT OF THE PROBLEM

The admittance Y? is the admittance at the i‘nner slot surface
looking into the MTL when a uniform magnetic current is
placed over the shorted surface [2]. The magnitude of the
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